Mangdo

Mango Network

Transactional Omni-Chain Infrastructure Network

Abstract

In response to the multiple pain points of
Web3 application and DeFi protocol, such as
fragmented user experience and fragmented
liquidity, Mango Network proposes a
transaction-based omni-chain infrastructure
network solution, aiming to build a one-stop
liquidity service network through main-chain
contracts and modular contracts, and to bring users
a more secure and trustworthy, asset-diversified,
and convenient and autonomous transaction
experience. At the same time, Mango, as Layerl
and supported by Move, provides developers and
users with a secure, modular and high-performance
Web3 infrastructure, and the Devnet boasts a high
TPS of 297.45k, which is both standardized,
scalable and interoperable, and provides a solid
underlay for building non-custodial, decentralized,
omni-chain mobility pledges, lending and
borrowing, POS pledges, GameFi, and other core
applications, so that participants can experience an
unprecedented level of freedom in Web3.

I Web3.0 Public Chain Leader - Move

1.1 Move emergence background

In 2019, Meta (formerly Facebook) introduced
the global circulation of the sovereign digital
currency project Libra. Throughout this process,
Libra and the Diem team left behind a valuable
legacy - the Move language that addresses the
shortcomings of Solidity and EVM, as well as the

v1.2

derived public chain team. Move language is a
resource-oriented programming language that
borrows syntax and semantics from languages such
as Rust, Cyclone, and Ada. The Move language
aims to provide a high-performance, secure, and
reliable programming environment for blockchain
applications. It is a programming language designed
specifically for digital assets.

1.2 Advantages of Move series public

chain

Move has redefined digital assets, believing
that token assets are a unique and important form of
data that should not be defined and represented
using ordinary numerical types. Therefore, Move
has created Resource to define on-chain assets
separately.

Move language lowers the security threshold
for developers, allowing contract developers to
focus on business logic and write highly secure
code, avoiding security vulnerabilities caused by
low-level bugs. This is what makes DeF1
(Decentralized Finance) safer and gives peace of
mind to node users.

1.3 Characteristics of Move language

Move aims to provide a secure, efficient, and
modular development solution for distributed
applications. The core idea of the Move language is
to break down complex programming tasks into
multiple modules, effectively reducing complexity
and lowering the probability of errors in
programming.

1

Mangdo

STARCOIN
Libra
'_ > Movel guage(Meta)
~diem

1.3.1 Programming assets as first-class

modify Move « Mango

resources (First-class Resources)

The Move language abstracts four attributes
of resources: copyable, indexable, droppable, and
storable. With different combinations of these
attributes, users can easily define any type of
resource.

The specified resources will be stored in a
module controlled by the owner's account,
represented by a verified owner/signer. The owner
of these resources has the ultimate decision-making
power and only the owner can determine the
storage and transfer of the resources.

The design of resources allows for the transfer
of digital assets to be a movement between storage
locations rather than a simple addition or
subtraction of balance values between accounts,
thus avoiding re-entry and double-spending attacks.

1.3.2 Ensure its security through static call,
virtual machine sandbox, etc

The Move language uses static calls, which
improves runtime security, solves the problems of
dynamic calls, and enhances network stability.

[STORAGE]

Market Bank
thod invok
Module mEshecinvoe Module

VM Sandbox

| v)

User

Move VM is the virtual machine sandbox for
the Move programming language, where contract
invocations are placed within the same sandbox.
During this process, the security of the contract's
state is primarily isolated through the internal
security of the programming language, rather than
relying on the virtual machine for isolation.

1.3.3 Verifiability

The Move programming language adopts
formal verification. Formal verification is a means
of using digital tools to analyze and prove the
security of a program. The previously mentioned
static calls and virtual machine sandbox can
enhance the security of verification.

1.3.4 Flexibility

The flexibility of Move is reflected in the
ability to freely combine various transactions
through transaction scripts to achieve different
functionalities, where one script can invoke
multiple transactions. By using generic
programming, Move ensures the scalability of
contracts and increases code reusability.

Mangdo

1.3.5 Contract composability

The composability of the Move language
comes from the design of its Modules. Upgrading
and optimizing Modules enables all other contracts
that have used this Module to automatically use the
latest version, accelerating the speed of upgrading
and optimizing smart contracts using the Move
language.

1.4 Status quo of Move series public

chains

The Move language truly achieves the
digitization of assets and is hailed as one of the
most suitable languages for writing blockchain
smart contracts. It has been compared to the current
mainstream language Solidity multiple times and
has surpassed it in many aspects. The main reason
is that Move provides a more fitting handling of the
core token assets in blockchain, compensating for
Solidity's shortcomings in intuitiveness and
security.

Comparison of Execution Engines

s Solana Handu

I

|]

| I

| I

| |

| I

| I

| I

| I

| I

| I

Currently, the public chain based on the Move

language is in the stage of ecological expansion,
attracting more developers and users to join. Once
an ecosystem is formed, users can bring sustainable
income. The more prosperous the ecosystem, the
stronger the innovation ability, and the more
marginal benefits there will be. This is also the
reason why public chains can become the core

carrier of Web3.

II Technical Differences of Solidity VS

Move

Transitioning from Bitcoin's Script to
Ethereum's Solidity, undergoing the baptism of
DeF1, Solidity has undoubtedly been successful.
However, the security vulnerabilities of DeFi are
also worth paying attention to. How to ensure the
security of on-chain assets has become a major
issue that the entire industry urgently needs to face.

Behind these vulnerabilities, VM is also
constantly patching up, such as fixing the original
overflow issues, but it is difficult to make
substantial improvements in the underlying design
flaws. Unlike previous development experiences,
DeF1i applications are essentially open-source and
transparent financial systems that have extremely
high security requirements. So, for financial
scenarios, designing a more secure, reliable, and
user-friendly smart contract language may be a
better choice.

Characteristic Solidity Move
Turing Yes Yes
completeness
Safety Poor Very good
Developer Yes Yes
friendly
Dispersed No Yes
storage
Engineering Poor Good
ability
Flexibility Dynamic Generic
mobilization programming
Financial scene No Yes
enhancement

Solidity still has three major technical

Mangdo

challenges that need to be overcome urgently.

Solidity's syntax and expression methods are
complex.

Traditional object-oriented programming
languages like Java have become the best choice for
novice developers to create Ethereum contracts.
However, due to the complexity of Solidity,
developers are unable to effectively understand its
syntax.

There are code security vulnerabilities in
Solidity.

This is also a major weakness of its
competitiveness. There are many security
vulnerabilities in Solidity due to improper usage, so
developers need to be well-prepared for security
testing before writing contracts in Solidity.

Solidity still has challenges in terms of
performance.

The performance of Solidity compared to
relatively simple programming languages like
Python still needs improvement. With the growth of
Ethereum, there is also a continuous increase in
Ethereum-based applications. The performance
issues of Solidity will affect the overall operational
efficiency of Ethereum, thereby increasing network
load and reducing the overall security of the
Ethereum network.

From the above perspective, Solidity, as the
most popular smart contract development language
on Ethereum, is powerful enough but not perfect.
Move language emerged in this context.

IIT Mango Programming Model

3.1 Resource-oriented programming

Mango Move has been specifically enhanced
for financial, social, and gaming scenarios,
introducing resource-oriented programming. For
common scenarios such as FT and NFT, Mango
Move defines data as resources, ensuring data
security at the virtual machine level.

3.2 Pure static language

Dynamic dispatch is the cornerstone of
Solidity, and all cross-contract invocations are
implemented through dynamic dispatch. It is also
the entry point for most security vulnerabilities,
such as TheDAO attack, PolyNetwork cross-chain
attack, and so on. Given the real experience of
Solidity, Mango Move adopts a completely pure
static implementation to better ensure the security
of on-chain assets.

3.3 Formal verification

Formal verification, also known as FV (formal
verification), refers to the use of mathematical tools
to analyze the space of possible behaviors of a
design, rather than computing specific values as
results. Mango Move comes with a formal
verification tool that can be used to test and prove
the reliability of contracts using mathematical
methods.

3.4 Distributed Storage

In the era of Web3.0, users have ownership of
data. Solidity stores contract data in a centralized
manner through Maps. When a contract has a
vulnerability and the contract Owner's permissions
are obtained, all user data will be compromised.
Mango Move cleverly uses Resource to store data
scattered under each user's Account, ensuring both
data security and true ownership of data by all
network nodes.

3.5 Generic programming

For security reasons, Mango Move has been
designed as a purely static language, but this has
not reduced its flexibility. Through generic
programming, Mango Move ensures the scalability
of contracts and increases code reusability.

4

Mangdo

Blockchain is a very important system, with a
large amount of assets stored on the blockchain.
Moreover, once these transactions on the
blockchain are executed, they cannot be revoked or
tampered with. It is necessary to ensure the normal
operation of functions such as transaction storage
on the chain. Mango Move is a smart contract
language that can be compiled and run in a
blockchain environment that has implemented
Move VM. Mango Move and the MoveProver tool
have emerged as a result.

IV Mango Move core design concept

Ensuring the security of smart contracts from
the ground up, according to SlowMist's previous
report, blockchain security incidents in 2021
resulted in losses exceeding 9.8 billion US dollars.
As an emerging programming language, the Move
language has also made breakthroughs and
innovations in terms of security at different levels.

Just as what First-classResources really means
as "digital assets are first-class citizens", Move is a
smart contract language designed for manipulating
digital assets. Compared to other languages, Move
has a more native and low-level handling of token
assets.

The Move language specifically defines assets
as a type of resource, distinct from other data. In the
context of blockchain, tokens are a type of resource,
and the data of the resource must be stored under an
account. During the transaction process, assets must
flow to a destination, either transferred to another
address or destroyed. Tokens cannot be duplicated
or "double used".

Solidity and most programming languages
treat tokens as numerical variables, where assets are
simply numbers that can be added or subtracted.
When the balance of one address decreases, the
balance of another address increases. By using code,
the decrease and increase in numbers can be made
consistent, thus ensuring the security of assets
through logical programming. Resource

encapsulates the concept of assets at the language
level, avoiding the arbitrary generation and access
of assets, greatly improving security.

Byte verification goes before contract
execution. Move differs from Solidity in terms of
compiler. As an executable bytecode language,
Move has built-in security algorithms and bytecode
verifiers, which can prevent many common errors.

The Move contract code must be verified
before it can be executed, which allows the contract
to be protected from potential compiler errors and
possible attacks. Move has been committed to
establishing a standardized culture from the very
beginning, with a standard library for each Move
module. The Move development team has initially
developed a dedicated validator called Move Prover
for contract verification.

o' Model suT
B L/"”J E3 u
o o]
- - e l
Elimination Injection phization

Move Prover Overall Frame

Based on modular composability: The
modularity of smart contracts, which is more
efficient and flexible, is another important feature
for building a programming language ecosystem.
The combination of smart contracts in the Solidity
and other language ecosystems is primarily based
on message passing between interfaces.

And in Mango Move, it is based on the
combination of modules, interacting through the
transfer of resources. Through the combination of
modules, Mango Move saves block space occupied
by contracts on one hand, and makes upgrades
easier on the other hand. At the same time, due to
the adoption of linear logic in the Module system, it
can effectively package and encapsulate the concept
of digital assets, clearly separating the definition of
resources from the behaviors related to resources.

5

Mangdo

This resource-oriented programming brings about
expressiveness and scalability that other languages
cannot provide.

Transaction-Based Resource-Based

A—>B My NFT
My NFT {newOwner: B}

Q EVM Solidity Mando

Mango Move Partial Program Code Display

Current status of the Move Prover
® 100% open source and actively maintained on GitHub.
® Fully automatic verification that implementations meetspecifications.

® Runs only a little slower than a linter (or other static analysistools) —
important for developer experience.

® 38,800 lines of code.
® 6,500 lines of specifications.

® Verification completes in a few minutes.

® Enforced in continuous integration, every change of Move codeneeds to
pass the verification.

Look and feel : programming in Move

module 0x1 : : Account {
// resources that can be stored in global storage
struct Account has key {
balance : u64

}

fun withdraw(account : address, amount : u64) acquires Account {
/| creates a mutable reference to an item in the global storage
let ptr: &mut Account =
borrow _ global_mut < Account > (account);
ptr.balance = ptr.balance - amount;

}

// the "main” function for a transaction
public entry fun transfer(

from : address, into : address, amount : u64
) acquires Account {

withdraw(from, amount);

deposit(into, amount);

V Type System of Mango Move

Due to a large amount of assets stored on the
blockchain, the programming language of
blockchain smart contracts must provide security
guarantees, and Mango Move is a programming
language designed for the blockchain that can
provide better security.

The type system of Mango Move provides
many protections, and we emphasize three points:
first, type safety; second, resource safety; and
finally, reference safety. The formal verification
tool Move Prover mainly provides more advanced
and expressive methods of representation. Whereas
- structinvariants is a type, a structure should have
some kind of state. -unit specification (per single
function) Each program and each function must
adhere to the corresponding specifications.

Type safety

Summary : Move is a strongly/statically typed language with strictly no
type conversions

In more details :

® Everyvariable and expression in Move has one and only one type
® The type is known at compile time.

® The type can never be changed whatsoever.

NOTE: these are not type conversions as new variables are created
- freeze: &mut T-->&T
- as: u8/u64/ul28 --> u8/ub4/ul2s

5.1 Type safety

Mango Move is a strong type system and
strictly guarantees that no type conversion can be
done in any situation. Types cannot be converted
between each other, and there is only one type for
each. This is a guarantee provided by the Mango
Move type system.

5.2 Resource safety

One is to ensure the scarcity of resources. The

6

Mangdo

abilities of copy and drop are depended to ensure
that a resource is not duplicated, which is
determined by these two abilities. The other two
abilities (key and store) determine the possible use
cases for this resource, whether it can appear in a
function and disappear after the smart contract ends,
and whether it can be written on the blockchain.
These two abilities also determine this.

Mango Move also encapsulates resources, and
all code related to resources should be encapsulated
in one module, ensuring that developers cannot
package it into multiple modules for resource
handling. Therefore, Mango Move actually
guarantees the security of resources in this aspect.

5.3 Quote safety

In the Mango Move language, it is ensured
through "quote safety" and follows the ownership
rules of Rust. Any local variable in a function can
be modified by only one process at any given time.
At the same time, for a global variable, within the
entire blockchain, there can only be one owner who
can make changes for any given type. This is
ensured through Mango Move's reference safety.

Resource safety

Summary: Move ensures that there are no dangling references to both
function locals and global storage — via ownership rules.

In more details :

® Any function local variable is uniquely owned at any time.
® Any Global <T> is uniquely owned at any time.

By uniquely owned, it means that a slot has:

® at most one writer and no readers, OR
® N(>0) readers and no writers.

VI Mango formalized verification

system.

As a new generation of smart contract

programming language, Move has made security its
top design goal in order to support Libra's vision as
a financial infrastructure and empower billions of
people worldwide. The security features of the
Move language can be divided into three levels:
language level, virtual machine level, and tool
level.

The formalization verification tool for Move is
called Move Prover. The basic idea is to use an
automated theorem prover in the formal verification
domain to verify whether a program complies with
a certain specification. This method requires users
to have a detailed understanding of the program's
operational logic, representing the program logic as
specifications and conveying it to the verification
system along with the program. "Move defines a
specification language called Move specification
language." Translate the following text into en-US
without explanation: Convert Move programs and
specifications into Boogie programs using the
Move to Boogie compiler - an intermediate
verification language with formal semantics.

Outline

o Introduction
o Move type system

o Move formal verification system

6.1 Struct invariant

The invariants of a struct allow for a complex
struct with multiple fields, where there exists a
relationship between different fields within the
struct. The invariants of the struct allow for
specifying the relationship between different fields,
which is currently not achievable by the type
system.

Mangdo

Outline

Struct invariants allows you to specify complicated relations among the
fields of a struct type which have to hold at runtime.

This set of specifications for struct plus struct
actually serves as an "enhanced type" that can
ensure the relationships between fields within the
struct conform to a certain relationship.

module 0x1 : : Account {

struct SumlisConst {
a:u64,
b:u64,

}

spec SumlisConst {
invariant a >= b;
invariant a+ b == 100;

}

fun create_valid(x : u64) : SumisConst {
assert! (x >=50, 1);
SumlisConst{a:x, b:100-x}

INFO] transdorming bytecode
INFO] generating verification conditions

INFO] running solver
INFO] 0.011s build,0.005s trafo,0.052s gen, 0.625s verify, total 0.693s
error : data invariant does not hold

[
[
[INFO] 1 verification conditions
[
[

test _sum _is _const. move:7:9
invarianta>=b:

at test _sum _is _ const. move : 11: create _ valid
X =47

at test _sum _is _ const. move : 12 : create _ valid

at test _sum _is _ const. move : 13 : create _ valid

at test _sum _is _ const. move: 7

exiting with verification errors
make : *** [Makefile : 26 : demo _sum _is _ const] Error 1

6.2 Function specification

One focus of Mango Move is to do the
specification of functions, specifying how a
function should behave in certain situations,
including how it should present itself and when it
should throw an error. Once a warning condition is

triggered, the execution will be terminated, which is
the goal of function specification.

Function specification

For people not familiar with formal verification, function specification
can be loosely considered as exhaustive unit testing.

The unit testing joke

A software engineer walks up to an ATM and ...

- withdraw(@0x1, 10);

- withdraw(@0x1, 1000);

- withdraw(@0x1, 999999999999999999999999999);
- withdraw(@0x1, 0);

- withdraw(@0x1, 20);

- withdraw(@0xdeadbeef, -123);

- withdraw(@0xbaadf00d, 666 * 2);

6.2.1 Abort Conditions

Move Prover provides an opportunity to
express function transactions in a more specialized
manner, allowing developers to write specifications
for functions through the function's specification.

Abort conditions in the function specification

module 0x1:: Account {
struct Account has key { balance : u64}

fun withdraw(account : address, amount : u64) acquires Account {
let ptr : &mut Account = borrow _ global _ mut < Account > (account);
ptr.balance = ptr.balance - amount;

}
spec withdraw {
aborts _if lexists < Account > (account);
aborts _if global < Account > (account).balance < amount;

6.2.2 Post-conditions

Post-condition is the running state of a
program function.

8

Mangdo

Post conditions in the function specification

module 0x1 : : Account {
struct Account has key { balance : u64 }

fun withdraw(account : address, amount: u64) acquires Account {
let ptr : &mut Account = borrow _ global _ mut < Account > (account);
ptr.balance = ptr.balance - amount;
1
spec withdraw {
aborts _ if lexists < Account > (account);
aborts _ if global < Account > (account).balance < amount;

// on successful function return
ensures global < Account > (account).balance ==
old(global < Account > (account).balance) - amount;

6.2.3 Pre-conditions

Function specification: Precondition, which
means that in addition to being able to write
exceptions in certain situations, there will be
changes in the absence of exceptions. When calling
this function, the precondition must exist. Having a
precondition can simplify exception conditions.

6.2.4 Global Invariants

Invariants are a type of property that always
remains the same during program execution.
Immutability is one of them: once an object of an
immutable type is created, it represents an
unchanging value.

script {
use 0x1::Debug;
const RECEIVER : address = 0x999;

fun main(account: &signer) {
Debug::print<address>(&RECEIVER);

/[they can also be assigned to a variable
let _ = RECEIVER;

// but this code leads to compile error
// RECEIVER = 0x800;

VII Mango modular blockchain

The Mango modular blockchain underlying
code and contract layer code are programmed using
the Move language, decomposing blockchain
functionality into different levels of network
architecture. Traditional blockchain systems
typically integrate consensus, settlement, data
availability, and execution functionalities into a
single architecture. However, with the increasing
complexity and demands of blockchain applications,
a single architecture may not be able to meet the
requirements of different scenarios. Therefore,
Mango modular blockchain separates these core
functions, allowing each functional module to
operate independently while maintaining
collaboration between them. This architecture
makes the blockchain system more flexible and
scalable, allowing for customization and
optimization based on different needs.

7.1 Modular blockchain and monolithic
blockchain

The concept of Mango modular blockchain
corresponds to a single-piece blockchain, and the
two have significant differences in terms of
functionality processing. First, it is necessary to
clarify the four core functions of blockchain:

1. Execution - transaction processing and
computation.

2. Resolve - Dispute resolution and bridging.

3. Consensus - Transaction ordering.

4. Data availability - Ensure data is available.

Mango modular blockchain is any chain that is
part of the modular blockchain stack, by
modularizing the blockchain and splitting the four
functionalities into multiple specialized layers. The
modular blockchain stack consists of multiple
layers of modular blockchains that depend on each
other to create a system with all the above
components.

9

Mangdo

Monolithic Modular

EXECUTION
SETTLEMENT,CONSENSUS [———>
DATA AVAILABILITY

S

EXECUTION

SETTLEMENT

CONSENSUS
DATA AVAILABILITA

7.2 Advantages of Mango Modular
Blockchain

7.2.1 Sovereign protection

Although other layers are used, the Mango
modular blockchain can have sovereignty like
Layerl. This allows the blockchain to respond to
hacker attacks and push upgrades without any
underlying permission. Essentially, sovereign
blockchain retains the ability to make critical
decisions based on social consensus, which is one
of the most important aspects of blockchain as a
social coordination mechanism.

7.2.2 Efficient and low-cost start-up of new
blockchains

Because the Mango modular blockchain does
not need to handle all functions, new blockchains
can simply use existing modular blockchains for
components they wish to unload. This allows for
the efficient bootstrapping of new blockchains,
reducing deployment time and minimizing costs.

7.2.3 Scalability

Returning to the most fundamental issue,

solving scalability is a major reason for promoting
the modular development of blockchain, without
sacrificing security and decentralization. Modular
blockchain is not limited by the requirement to
handle all functionalities. By dividing them into
multiple layers, scalability can be achieved without
sacrificing security and decentralization. This
makes sustainable blockchain scalable and
compatible with a decentralized multi-chain
environment.

VIII Mango's new paradigm for

omni-chain applications.

8.1 From single chain to multi-chain, and

then to omni-chain.

As the first smart contract platform, most of all
decentralized applications could only be deployed
on Ether at the beginning of its birth. However,
with the flourishing of public chain ecosystems and
the development of Layer 2 solutions, applications
now have more choices.

8.1.1 Single chain deployment status

The application can choose to deploy on a
specific chain that suits its own business. Each
chain or L2 has its own unique mechanism design,
with different characteristics in terms of
decentralization, privacy, and data availability, etc.,
to meet the needs of different applications. At the
same time, various one-click chain creation stacks
are becoming more and more mature, and
application developers can completely create their
own chains and customize related features. A
typical example is the DYDX protocol, which is an
early decentralized derivatives trading market
created on Ethereum and has now migrated to a
separate Cosmos Zone to better meet its throughput
requirements.

10

Mangdo

8.1.2 Multi-chain deployment status

Applications can choose to deploy on multiple
chains, allowing users on different chains to access
the services provided by the application. From the
point of view of the application itself, it is possible
to scale up the business and increase the revenue of
the protocol. For example, AAVE, a well-known
lending protocol, has deployed its application on six
chains.

8.2 Multi-chain application VS Mango

omni-chain application

The deployment of contracts on multiple
chains in an application cannot share liquidity,
which also leads to the fragmentation of the Web3
ecosystem, including the fragmentation of user
experience and liquidity.

8.2.1 Fragmented user experience in

multi-chain cross-chain

In order to use different on-chain services,
users need to transfer assets across multiple chains,
register addresses on different chains, and learn
operations on different chains. In many cases, users
need to take many steps and prepare many kinds of
Gas in order to achieve the desired results.

8.2.2 Liquidity fragmentation across

multiple chains

In many types of DeF1 protocols, liquidity
depth is a part of their core experience. The same
liquidity cannot exist simultaneously on multiple
chains. Every DeFi protocol, when deployed on a
new chain, needs to rebuild liquidity, which reduces
the overall efficiency of liquidity.

8.2.3 Mango Omni-dApp (Mango

omni-chain application)
Mango's omni-chain application is based on

the Mango Move underlying modular deployment
contract protocol to carry the program's global state,
which is a new way of building applications where
developers design the application as a whole, taking
omni-chain interoperability as a prerequisite, rather

than simply replicating a single-chain application
on multiple chains. The Mango omni-chain
application consists of different modules on
different chains, which have interoperability and
together form a complete application. Compared to
multi-chain deployment, Mango's omni-chain
application can extend its tentacles to more chains,
allowing users on more chains to use program
services without the problem of fragmented user
experience and fragmented liquidity.

Features Multi-Chain Omni-Chain
Status record | Distributed Unified on one
across multiple | chain
chains.
Liquidity Distributed Unified on one
across multiple | chain
chains.
Users need to | Users can access
User be familiar with | programs on any
experience multi-chain chain just like
operations, accessing local
prepare programs.
multi-chain gas,
and frequently
transfer assets.
Only friendly to | Better
Integratability | integrated cross-chain
chains, but | interoperability
more complex
for cross-chain
integration.

In this table, the analogy between omni-chain architecture

and simple multi-chain deployment is shown:

8.3 Technical architecture of Mango

Omni-chain Application

11

Mangdo

The technical architecture of the omni-chain
application consists of the Mango main chain
contract and module contract pattern. The main
logic of the application is placed on the Mango
main chain, like a "master control", and then other
chains provide a remote access module to achieve
interaction with end users, obtain user input, and
output the desired results for users.

l Vaults Pool] [Yield Farming Pools l | POS Staking Pools |
[

L Mango Main Chain Contract)

1 1 | 1 1

Module Contract Madule Contract Module Contract Module Contract Module Contract
ETH BSC TRON Palygon X Chain

| 1 | | |
<o < < on e <o > << xchan >

l Lending ‘ [Oracle } | GameFi

Mango Omni-chain Architecture Principle Logic Diagram

Application

Application
= P
>

—————————
| Validator1 |
| Validatar2
| Validator3 |
T Validwors |
| Validator 5 1
| Validator 6

Mango's omni-chain cross-chain bridge technology

architecture diagram

Application

g8
3
E
H
° Execute || Add Liquidity | !
xecy ! M?.‘r" ty | Hash oy,

Prediction i i
cuccessful instructions 1 | Trar it
| MangoOracle Mango Swap I |
|] Withdraw
Liquidity Pool
‘ MLP

Mango lending | pregge loan
platform —

i
“ | 4 || Add Liquidity LP
| :
[
i validator X | 1 | Lquidity Pool LP |

fouter Contract
—
-
smmu

il

Ot ot s veraton |

Mango's Omni-chain application technology architecture

diagram

After the new chain obtains the user's input, it
passes that input across the chain to the Mango
master chain for processing and outputting the

result, which is then passed across the chain to the
new chain for outputting to the user. In some cases,
different modules of the main chain may be split
into different chains, which together form a virtual
main chain.

8.4 Technical architecture advantages of

Mango's Omni-chain Application

1. The entire chain is easy to expand. The main
logic of the program is processed on the Mango
main chain, and the application has a unified state
record. After deploying the contract on the new
chain, users can inherit all the state records and
liquidity from the main chain without reinventing
the wheel.

2. The overall user experience is improved, as users
do not need to worry about which chain the
program is deployed on. They can access the
program from the main chain of the entire network,
just like accessing a local program. There is no
need to transfer assets back and forth, and there is
no need to learn operations on multiple blockchains
or prepare various types of gas.

3. The entire chain is easy to integrate across chains.
When other applications integrate this program,

they only need to connect on the main chain of the
entire network to access all its features and liquidity,
instead of having to connect separately to all other
chains.

Mango Network's omni-chain application, as a
new paradigm, has provided many new possibilities
for us, supporting for arbitrary chain forging,
redemption, and exchange. The application allows
users to complete operations without perceiving any
cross-chain processes.

When the omni-chain application becomes the
mainstream paradigm of decentralized applications,

12

Mangdo

both application developers and users can
experience unprecedented freedom in the
blockchain world.

IX Mango public chain infrastructure

protocol

9.1 ZK zero-knowledge proof

The Mango public chain combines
zero-knowledge proofs, allowing one party to
disclose information knowledge to another party
without revealing the information itself. Extend the
universal blockchain. Through proof of validity,
blockchain nodes can verify transactions without
storing detailed information or replaying
computations. This reduces confirmation time and
improves network throughput.

Due to its scalability advantages,
zero-knowledge proof has become the core
infrastructure of blockchain scaling projects,
especially zero-knowledge rollups, in the Mango
public chain. ZK-SNARKSs and ZK-STARKSs are
the main types of zero-knowledge proofs.

O O
i — 3. Send the praof =

T L 2. Get the proof 4. Check the proof —J T
1. Send a confidential info 5. Get the result
1 Function Function

“Make a proof” “Check a proof”

9.1.1 Anonymous trading

Mango public chain uses ZK proof technology,
allowing users to maintain anonymity during
transactions. To verify the validity and legality of a

transaction without exposing any information about
the transaction participants or the assets involved,
generate ZK proofs.

9.1.2 Privacy protection

Mango's public chain uses ZK proof
technology to perform data validation without
revealing sensitive information. When verifying
that a certain node on the chain owns specific assets,
ZK proofs can be used without revealing the
identity of the participant or any other sensitive
information.

9.1.3 Data integrity

The Mango public chain ensures that
important data such as block data and smart
contract states have not been tampered with and
have been correctly calculated through the
zk-SNARKSs (Zero-Knowledge Scalable
Non-Interactive Argument of Knowledge) protocol,
providing highly reliable data proof for the Mango
public chain.

9.1.4 Cross-chain interaction

Mango public chain and ZK proof technology
can be used for secure and private cross-chain
interactions between different blockchains. To
verify the validity of specific cross-chain
transactions and protect the privacy of participants,
it is done by generating ZK proofs.

9.2 Distributed Storage

One way is to store data in a decentralized
manner on multiple independent devices, which
overall achieves distributed architecture. In the field
of blockchain applications, it represents a new
generation of distributed storage technology

13

Mangdo

represented by IPFS. Unlike traditional storage
technology, the new generation of distributed
storage not only changes the way storage is done,
but also changes the system architecture and
network transmission protocol, allowing distributed
storage to truly be stored among different parties,
while also achieving privacy protection and security
for the data.

0 PN
i ¥ 9
D 170 - -

- ~N o

Central Storage Architecture Distributed Storage Architecture

When the user extracts data, the same
algorithm is used to calculate the hash of the data
and obtain the corresponding data storage location
from the hash table (as shown in the figure below).

| Fox | | Hash function | DFCD3454 |

The red fox runs
across theice

| Hash function | 52ED879E

The red fox walks
across theice

| Hash function | 46042841

‘ Mango underlying public chain|

In the Mango public chain infrastructure
protocol, distributed storage is a technology used
for storing and managing data. It disperses data
storage across multiple nodes in the network to
enhance data reliability, security, and scalability.

9.2.1 Data redundancy

The Mango public chain adopts distributed
storage technology to achieve data redundancy.
Each data block will be replicated on multiple
different nodes to ensure that even if some nodes

fail or go offline, the complete data can still be
obtained from other nodes.

9.2.2 Data encryption

In order to protect user privacy and data
security, the Mango public chain infrastructure
protocol uses encryption algorithms to encrypt the
data uploaded by users to the distributed storage
network, which ensures that only authorized users
can access and decrypt this data.

9.2.3 Data reliability

By replicating data to multiple nodes and using
fault-tolerant mechanisms to detect and repair
damaged or lost copies, Mango public chain
ensures that its distributed storage system has high
reliability. Even if certain nodes fail or are attacked,
it is still possible to recover lost or damaged files
from other replicas.

9.2.4 Scalability

The distributed storage system of Mango
public chain can be horizontally scaled according to
demand. When more data storage is needed, simply
adding more storage nodes can increase the storage
capacity of the entire system without compromising
performance or reliability.

9.2.5 Data permission control

The Mango public chain infrastructure
protocol provides a powerful data permission
control mechanism. Users can define the
permissions and policies for accessing their data,
ensuring that only authorized users can access and
modify this data.

14

Mangdo

9.3 MgoDNS domain name service

MgoDNS is a solution for distributed domain
names based on cross-chain protocols. It provides
domain and domain data analysis services for
non-intermediated networks. This platform can help
businesses and individual users manage valuable
on-chain data information, and now they can
participate in digital asset transactions in a more
efficient, secure, and convenient way. MgoDNS
aims to make the internet a transparent, secure, and
free space through its innovative decentralized
measures.

MgoDNS maximizes compatibility and
achieves decentralization of the system. The
underlying layer of MgoDNS is blockchain, and the
upper layer is traditional internet. MgoDNS can
also connect various types of public chains and
consortium chains, collectively forming a super hub
for connecting various blockchains.

Traditional Internet has mature business
models in project operation, but its drawbacks are

also obvious, such as data leakage, server downtime,

and other incidents. On the other hand, although
blockchain technology fundamentally solves the
problem of data trust, there is a lack of a certain
foundation in terms of the scale and operation of
applicable scenarios. So, the connection function of
MgoDNS will enable the effective integration and
application of both, complementing each other and
achieving decentralization of the system.

9.3.1 MgoDNS domain name system,
connecting the information internet and the

value internet.

Unlike the infrastructure of traditional domain
name services, MgoDNS's smart contract can
replace the roles and processes of most registration
agencies. Any institution or individual can create
subdomains based on the rules of the registering
institution. The parser plays the role of a translator,

converting names into hash addresses and some
mainstream public chain addresses. Based on
cross-chain design, MgoDNS can serve existing
public chain ecosystems such as Ethereum, IPFS,
etc., making file access, address transfers, and smart
contract calls more convenient and faster.

9.3.2 MgoDNS domain name parsing
system, super hub connecting the

information Internet and the value
blockchain.

MgoDNS domain name system focuses on
providing blockchain domain names and domain
name data resolution services for blockchain
networks, helping enterprises and individual users
to participate in digital asset transactions and
manage on-chain value data information more
conveniently and securely. Meanwhile, based on
cross-chain design, MgoDNS can serve existing
public chain ecosystems such as Ethereum, IPFS,
etc., making file access, address transfers, and smart
contract calls more convenient and faster.

'
1

: Account book Account book synchronization Account book

1

1

1 Clphertext preservation

1

1

1 chaincode

1

: Peer invoke qucmmphu: query Peer
1 encryptmn SDK

1

(

C|phenext preservat on

chaincode

Homomarphlc
encrypnon SDK

Invoke (—Smart contract synchronlzatlon-] query
Amazon Cloud Ciphertext Amazon Cloud Ciphertext
Cl|ent homomorphism trade data Cllent homomorphism trade data

Homomorphic key management

o ‘o %

Private key EPV Public key EPUK Calculation public-key EVK

MgoDNS domain name resolution technology:

- MgoDNS achieves distributed domain name
resolution by using domain name resolution smart
contracts and cross-chain data exchange on multiple

15

Mangdo

mainstream chains.

- Domain name registration, resolution, and
trading are not affected by any centralized factors,
achieving complete decentralization. The security
of domain names is guaranteed by blockchain
technology, and the resolution of domain names is
supported by a high-speed blockchain network.

‘MgoDNS is fully compatible with the
management and resolution of existing domain
names.

-Support dynamic domain name resolution.
MgoDNS automatically updates IP mapping and
achieves blockchain confirmation in seconds
through the wallet, enabling dynamic domain name
services like traditional Peanut Shell and Dandelion
without additional costs.

-Support for user-defined domain names. From
the perspective of the domain name product, there
are currently Ethereum Name Service (ENS) and
Unstoppable Domains. However, ENS only
supports the resolution of cryptocurrency addresses,
making it difficult to connect to the traditional
information internet and the underlying blockchain.
On the other hand, the application scenarios of
Unstoppable Domains are also relatively limited.

In addition to fulfilling the functions of
traditional DNS domains, MgoDNS also combines
the functions of information networks and value
networks, supporting traditional domain name
resolution, user identity authentication, DApp,
social relationship networks, video conferences, and
distributed information flow and other
scenario-based applications.

Unstoppable
ENS . MgoDNS
Domains
Digital
currency
Support Support Support
address
resolution
IP address
. Nonsupport Support Support
parsing
Traditional
domain name | Nonsupport | Nonsupport Support
analysis
Underlying Ethereum Ethereum
] ManGO
blockchain (ETH) (ETH)
User identity
L Nonsupport Nonsupport Support
authentication
Domain name
resolution Nonsupport Nonsupport Support
client
Decentralized
Nonsupport Support Support
network
Decentralized
encrypted Nonsupport Nonsupport Support
mailbox
Decentralized
edge-cloud Nonsupport Nonsupport Support
computing
Decentralized
edge Nonsupport Nonsupport Support
DAppstore
9.4 Mango client end

A copy (also known as: full client) is a
consistent copy that maintains the effective state of
the system, used for auditing and building
transactions or operational services. Lightweight
clients are based on object references and
transactional authentication information, which can
authenticate transactions that cause their creation or
execution. Copies perform high-integrity reads of
the system state without the need to maintain
complete replica nodes. By providing concise

16

Mangdo

evidence packages and effect certificates, the
lightweight client can undergo transformation
within Mango and perform transaction operations
or observe results. Regular checkpoint mechanism
can be used to create collective checkpoints for
final transactions, effectively verifying the recent
state of objects and the events issued.

Customer-driven is a mechanism for handling
authorization failures or client malfunctions. The
client can solve these problems by updating to a
level of honest authority that can handle correct
transactions. Once there are no more certificates to
synchronize, the list will be submitted to the new
authority for execution. The relay is the client that
performs this operation, and multiple relays can run
simultaneously to update and coordinate the replica
operation service with each other. Blocks are tools
used by followers to receive updates and maintain
the latest view state when processing authorizations.
In addition, the authorities can use a push-pull
gossip network to update transactions with each
other and reduce the number of times the relay
needs to perform this function. The authorities may
use periodic status commitments to ensure that they
have dealt with the complete set of certificates until
a certain checkpoint.

The Mango system expands its capabilities by
allocating more resources to handle transaction
permissions. These resources include CPU, memory,
network, and storage within or across multiple
machines. Increasing resources can improve the
ability to process transactions, thereby increasing
revenue. At the same time, more resources will also
reduce latency because operations can be executed
without waiting for necessary resources to become
available.

In order to ensure that more resources can
increase capacity in a quasi-linear manner, the
Mango system actively reduces bottlenecks and
synchronizes points that require global locking
within permissions. Transaction processing is
explicitly divided into two phases: the first phase is
to ensure exclusive access to a specific version of
an object or shared access to an object; the second

phase is to execute the transaction and commit its
effects.

For transactions involving shared objects, it is
necessary to use consensus protocols for ordering,
which may become a bottleneck. "But the latest
high-throughput consensus protocol for engineering
indicates that sorting is only the bottleneck in state
machine replication, not the execution order." In the
Mango system, sorting is only used to determine the
version of the input shared object, that is,
incrementing the object version number and
associating it with the transaction summary, without
involving sequential execution.

The second phase occurs when the versions of
all input objects are known to the permissions and
involves executing a move transaction and
committing its effects. Once the version of the input
object is known, it can be executed in a fully
parallel manner. On multi-core or multi-physical
machines, virtual machines read versioned input
objects and write the generated objects to storage.
For object and transaction storage, the consistency
requirements are very loose (except for sequential
lock mapping), allowing each authority to use
scalable distributed key-value storage. In addition,
due to the idempotent nature of the execution, it is
easy to recover even in the event of component
crashes or hardware failures.

X References

1. https://github.com/MangoNet-Labs/mango

2. D. Matsuoka, C. Dixon, E. Lazzarin, and R.
Hackett.(2022) Introducing the 2022 state of crypto
report. https://al 6z.com/tag/state-of-crypto-2022/
3. S. Blackshear, E. Cheng, D. L. Dill, V. Gao, B.
Maurer, T. Nowacki, A. Pott, S. Qadeer, D. R.
Rain, S. Sezer, T. Zakian, and R. Zhou, "Move: A
language with programmable resources," 2019.
https://developers.diem.com/papers/diem-move-a-la
nguage-with-programmableresources/2019-06-18.p
df

4. Sam Blackshear, David L. Dill, Shaz Qadeer,

1’7

https://a16z.com/tag/state-of-crypto-2022/
https://developers.diem.com/papers/diem-move-a-language-with-programmableresources/2019-06-18.pdf
https://developers.diem.com/papers/diem-move-a-language-with-programmableresources/2019-06-18.pdf
https://developers.diem.com/papers/diem-move-a-language-with-programmableresources/2019-06-18.pdf

Mangdo

Clark W. Barrett, John C. Mitchell, Oded Padon,
and Yoni Zohar. Submitted on July 23, 2020; v1
submitted on April 10, 2020; originally announced
in April 2020. Resources: A Safe Language
Abstraction for Money. CoRR abs/2004.05106
(2020). arXiv:2004.05106
https://arxiv.org/abs/2004.05106

5. Marco Patrignani and Sam Blackshear. 2021.
Robust Safety for Move. CoRR
abs/218.05043(2021).arXiv:218.05043
https://arxiv.org/abs/218.05043

6. Daniel Collins, Rachid Guerraoui, Jovan
Komatovic, Petr Kuznetsov, Matteo Monti, Matej
Pavlovic, Yvonne-Anne Pignolet, Dragos-Adrian
Seredinschi, Andrei Tonkikh, and Athanasios
Xygkis. 2020. Online Payments by Merely
Broadcasting Messages. In the 50th Annual
IEEE/IFIP International Conference on Dependable

Systems and Networks, DSN 2020, Valencia, Spain,

June 29 - July 2, 2020. IEEE

7. David Dill, Wolfgang Grieskamp, Junkil Park,
Shaz Qadeer, Meng Xu, Emma Zhong. Fast and
Reliable Formal Verification of Smart Contracts
with the Move Prover. Submitted 12 February,
2022; v1 submitted 15 October, 2021; originally
announced October.2021. arXiv:218.08362
https://arxiv.org/abs/218.08362

18

https://arxiv.org/abs/
https://arxiv.org/abs/218.05043
https://arxiv.org/abs/218.08362

	I Web3.0 Public Ch
	1.1 Move emergence background
	1.2 Advantages of Move series public chain
	1.3 Characteristics of Move language
	1.3.1 Programming assets as first-class resources
	1.3.2 Ensure its security through static call, vir
	1.3.3 Verifiability
	1.3.4 Flexibility
	1.3.5 Contract composability

	1.4 Status quo of Move series public chains

	II Technical Diffe
	III Mango Programm
	3.1 Resource-oriented programming
	3.2 Pure static language
	3.3 Formal verification
	3.4 Distributed Storage
	3.5 Generic programming

	IV Mango Move core
	V Type System of M
	5.1 Type safety
	5.3 Quote safety

	VI Mango formalize
	6.1 Struct invariant
	6.2 Function specification
	6.2.1 Abort Conditions
	6.2.2 Post-conditions
	6.2.3 Pre-conditions
	6.2.4 Global Invariants

	VII Mango modular
	7.1 Modular blockchain and monolithic blockchain
	7.2 Advantages of Mango Modular Blockchain
	7.2.1 Sovereign protection
	7.2.2 Efficient and low-cost start-up of new block
	7.2.3 Scalability

	VIII Mango's new paradigm for omni-chain applicati
	8.1 From single chain to multi-chain, and then to
	8.1.1 Single chain deployment status
	8.1.2 Multi-chain deployment status

	8.2 Multi-chain application VS Mango omni-chain ap
	8.2.1 Fragmented user experience in multi-chain cr
	8.2.2 Liquidity fragmentation across multiple chai
	8.2.3 Mango Omni-dApp (Mango omni-chain applicatio

	8.3 Technical architecture of Mango Omni-chain App
	8.4 Technical architecture advantages of Mango's O

	IX Mango public ch
	9.1 ZK zero-knowledge proof
	9.1.1 Anonymous trading
	9.1.2 Privacy protection
	9.1.3 Data integrity
	9.1.4 Cross-chain interaction

	9.2 Distributed Storage
	9.2.1 Data redundancy
	9.2.2 Data encryption
	9.2.3 Data reliability
	9.2.4 Scalability
	9.2.5 Data permission control

	9.3 MgoDNS domain name service
	9.3.1 MgoDNS domain name system, connecting the in
	9.3.2 MgoDNS domain name parsing system, super hub

	9.4 Mango client end

	X References

